Skip to content

SSVC Policy Generator Tool

The SSVC Policy Generator is a Python object that generates an SSVC decision policy (a decision tree) from a set of input parameters.

It is intended to be used as a library, for example within a Jupyter notebook.

Provides a Policy Generator class for SSVC decision point groups.

PolicyGenerator

Generates a policy for a given decision point group and outcome group.

An SSVC policy is represented as a table of decision point values and outcomes. Each row of the table represents a specific set of decision point values, and the outcome that results from those values.

Internally, the PolicyGenerator represents a policy as a directed graph. Each node in the graph corresponds to a specific set of decision point values. Each edge in the graph indicates an ordering between two states. Taken together, the graph represents a partial ordering of the decision point values mapped to outcomes.

Source code in src/ssvc/policy_generator.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
class PolicyGenerator:
    """
    Generates a policy for a given decision point group and outcome group.

    An SSVC policy is represented as a table of decision point values and outcomes.
    Each row of the table represents a specific set of decision point values, and the outcome that results from those values.

    Internally, the PolicyGenerator represents a policy as a directed graph.
    Each node in the graph corresponds to a specific set of decision point values.
    Each edge in the graph indicates an ordering between two states.
    Taken together, the graph represents a partial ordering of the decision point values mapped to outcomes.
    """

    def __init__(
        self,
        dp_group: SsvcDecisionPointGroup = None,
        outcomes: OutcomeGroup = None,
        outcome_weights: List[float] = None,
        validate: bool = False,
    ):
        """
        Create a policy generator.

        If outcome weights are unspecified, then the weights are evenly distributed across the outcomes.

        Args:
            dp_group: The decision point group to generate a policy for.
            outcomes: The outcome group to generate a policy for.
            outcome_weights: The relative weights of the outcomes (optional)

        Raises:
            ValueError: If dp_group or outcomes are None.
        """
        if dp_group is None:
            raise ValueError("dp_group is required")
        else:
            self.dpg: SsvcDecisionPointGroup = dp_group

        if outcomes is None:
            raise ValueError("outcomes is required")
        else:
            self.outcomes: OutcomeGroup = outcomes

        if outcome_weights is None:
            weight = 1.0 / len(list(self.outcomes))
            self.outcome_weights = [weight for _ in self.outcomes]
        else:
            # validate the number of outcome weights
            if len(outcome_weights) != len(list(self.outcomes)):
                raise ValueError(
                    f"Outcome weights must have {len(list(self.outcomes))} elements, but has {len(outcome_weights)}"
                )

            # validate that the outcome weights sum to 1.0
            total = sum(outcome_weights)
            if not math.isclose(total, 1.0):
                raise ValueError(f"Outcome weights must sum to 1.0, but sum to {total}")

            self.outcome_weights = outcome_weights

        logger.debug(f"Outcome weights: {self.outcome_weights}")

        self.policy: pd.DataFrame = None
        self.G: nx.DiGraph = nx.DiGraph()
        self.top: Tuple[int] = None
        self.bottom: Tuple[int] = None

        self._enumerated_vec = None
        self._check_valid_paths = validate

    def __enter__(self) -> "PolicyGenerator":
        """
        Sets up a policy generator runtime context.

        The runtime context performs the following steps in order:

        1. Converts the decision point group to a vector
        representation.
        2. Adds nodes to the graph. A node is represented as a tuple of decision point values as
        integers. E.g., `(0,1,0,2)`, `(1,2,1,3)`
        3. Adds edges to the graph where each edge $(u,v)$ indicates that $u < v$.
        4. Assigns outcomes to each node in the graph according to the outcome weights.
        5. Validates that the graph
        meets the requirement that outcome ordering is consistent with node ordering.
        6. Converts the graph to a policy table. The policy table is a dataframe where each row represents a node in
        the graph.

        !!! note "Node ordering"

            A node $u$ is considered less than another node $v$ if $u[i] <= v[i]$ for all $i$.


        Example:
            ```python
            with PolicyGenerator(dp_group, outcomes) as pg:
                pg.emit_policy()
            ```

        Returns:
            The policy generator context.
        """
        self._setup()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass

    def _setup(self):
        """
        Convert the decision point group to a vector representation.
        """

        self._enumerate_dp_values()
        self._add_nodes()
        self._add_edges()
        self._assign_outcomes()
        if self._check_valid_paths:
            self._validate_paths()
        self._create_policy()

    def _validate_paths(self):
        for path in nx.all_simple_paths(self.G, self.bottom, self.top):
            for start, end in zip(path[:-1], path[1:]):
                u = self.G.nodes[start]["outcome"]
                v = self.G.nodes[end]["outcome"]
                if u > v:
                    raise (ValueError(f"Invalid path: {u} !<= {v} in {path}"))

    def _create_policy(self):
        rows = []
        for node in self.G.nodes:
            row = {}
            for i in range(len(node)):
                # turn the numerical indexes back into decision point names
                col1 = f"{self.dpg.decision_points[i].name}"
                row[col1] = self.dpg.decision_points[i].values[node[i]].name
                # numerical values
                col2 = f"idx_{self.dpg.decision_points[i].name}"
                row[col2] = node[i]

            oc_idx = self.G.nodes[node]["outcome"]
            row["outcome"] = self.outcomes.outcomes[oc_idx].name

            row["idx_outcome"] = oc_idx
            rows.append(row)

        self.policy = pd.DataFrame(rows)

    def clean_policy(self) -> pd.DataFrame:
        df = self.policy.copy()
        print_cols = [c for c in df.columns if not c.startswith("idx_")]
        for c in print_cols:
            df[c] = df[c].str.lower()

        return pd.DataFrame(df[print_cols])

    def emit_policy(self) -> None:
        """
        Prints the policy to stdout in CSV format.
        """
        df = self.clean_policy()

        print(df.to_csv(index=False))

    def _assign_outcomes(self):
        node_count = len(self.G.nodes)
        outcomes = [outcome.name for outcome in self.outcomes.outcomes]
        logger.debug(f"Outcomes: {outcomes}")

        layers = list(nx.topological_generations(self.G))
        logger.debug(f"Layer count: {len(layers)}")
        logger.debug(f"Layer sizes: {[len(layer) for layer in layers]}")

        outcome_counts = [round(node_count * weight) for weight in self.outcome_weights]

        toposort = list(nx.topological_sort(self.G))
        logger.debug(f"Toposort: {toposort[:4]}...{toposort[-4:]}")

        outcome_idx = 0
        assigned_counts = [0 for _ in self.outcomes.outcomes]
        for node in toposort:
            # step through the nodes in topological order
            # and assign outcomes to each node
            self.G.nodes[node]["outcome"] = outcome_idx
            assigned_counts[outcome_idx] += 1

            # if we've assigned enough of this outcome, move on to the next outcome
            if (
                outcome_idx < (len(self.outcomes.outcomes))
                and outcome_counts[outcome_idx] <= assigned_counts[outcome_idx]
            ):
                outcome_idx += 1

        logger.debug(f"Expected counts: {dict(zip(outcomes,outcome_counts))}")
        logger.debug(f"Assigned counts: {dict(zip(outcomes,assigned_counts))}")

    def _add_edges(self):
        # for each node, create an edge to the next node if the next node is strictly greater than the current node
        for u, v in itertools.product(self.G.nodes, self.G.nodes):
            if u == v:
                # don't create an edge from a node to itself
                continue

            # if the next node has at least one value greater than the current node
            if all(u[i] <= v[i] for i in range(len(u))):
                # then create an edge from the current node to the next node
                self.G.add_edge(u, v)

        # the previous loop creates a much larger graph than we need
        # so replace it with the transitive reduction of the graph
        logger.debug(f"Edge count (pre-reduction): {len(self.G.edges)}")
        self.G = nx.transitive_reduction(self.G)
        logger.info(f"Edge count: {len(self.G.edges)}")

    def _add_nodes(self):
        # then get the cartesian product of the values
        # so [[0,1,2],[0,1],[0,1,2]] becomes
        # [[0,0,0],[0,0,1],[0,0,2],[0,1,0],[0,1,1],[0,1,2]]
        vec = self._enumerated_vec

        self.bottom = tuple([min(t) for t in vec])
        self.top = tuple([max(t) for t in vec])

        logger.debug(f"Top node: {self.top}")
        logger.debug(f"Bottom node: {self.bottom}")

        # add a node for each cartesian product of the elements of vec
        for node in itertools.product(*vec):
            node = tuple(node)
            self.G.add_node(node)

        node_count = len(self.G.nodes)
        logger.info(f"Node count: {node_count}")
        return node_count

    def _enumerate_dp_values(self):
        # for each decision point in the group, get an enumeration of the values
        # so [[a,b,c],[d,e],[f,g,h]] becomes [[0,1,2],[0,1],[0,1,2]]
        vec = []
        for dp in self.dpg.decision_points:
            vec.append(tuple(range(len(dp.values))))

        logger.debug(f"Enumerated vector: {vec}")

        self._enumerated_vec = vec

__enter__()

Sets up a policy generator runtime context.

The runtime context performs the following steps in order:

  1. Converts the decision point group to a vector representation.
  2. Adds nodes to the graph. A node is represented as a tuple of decision point values as integers. E.g., (0,1,0,2), (1,2,1,3)
  3. Adds edges to the graph where each edge \((u,v)\) indicates that \(u < v\).
  4. Assigns outcomes to each node in the graph according to the outcome weights.
  5. Validates that the graph meets the requirement that outcome ordering is consistent with node ordering.
  6. Converts the graph to a policy table. The policy table is a dataframe where each row represents a node in the graph.

Node ordering

A node \(u\) is considered less than another node \(v\) if \(u[i] <= v[i]\) for all \(i\).

Example
with PolicyGenerator(dp_group, outcomes) as pg:
    pg.emit_policy()

Returns:

Type Description
PolicyGenerator

The policy generator context.

Source code in src/ssvc/policy_generator.py
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def __enter__(self) -> "PolicyGenerator":
    """
    Sets up a policy generator runtime context.

    The runtime context performs the following steps in order:

    1. Converts the decision point group to a vector
    representation.
    2. Adds nodes to the graph. A node is represented as a tuple of decision point values as
    integers. E.g., `(0,1,0,2)`, `(1,2,1,3)`
    3. Adds edges to the graph where each edge $(u,v)$ indicates that $u < v$.
    4. Assigns outcomes to each node in the graph according to the outcome weights.
    5. Validates that the graph
    meets the requirement that outcome ordering is consistent with node ordering.
    6. Converts the graph to a policy table. The policy table is a dataframe where each row represents a node in
    the graph.

    !!! note "Node ordering"

        A node $u$ is considered less than another node $v$ if $u[i] <= v[i]$ for all $i$.


    Example:
        ```python
        with PolicyGenerator(dp_group, outcomes) as pg:
            pg.emit_policy()
        ```

    Returns:
        The policy generator context.
    """
    self._setup()
    return self

__init__(dp_group=None, outcomes=None, outcome_weights=None, validate=False)

Create a policy generator.

If outcome weights are unspecified, then the weights are evenly distributed across the outcomes.

Parameters:

Name Type Description Default
dp_group SsvcDecisionPointGroup

The decision point group to generate a policy for.

None
outcomes OutcomeGroup

The outcome group to generate a policy for.

None
outcome_weights List[float]

The relative weights of the outcomes (optional)

None

Raises:

Type Description
ValueError

If dp_group or outcomes are None.

Source code in src/ssvc/policy_generator.py
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def __init__(
    self,
    dp_group: SsvcDecisionPointGroup = None,
    outcomes: OutcomeGroup = None,
    outcome_weights: List[float] = None,
    validate: bool = False,
):
    """
    Create a policy generator.

    If outcome weights are unspecified, then the weights are evenly distributed across the outcomes.

    Args:
        dp_group: The decision point group to generate a policy for.
        outcomes: The outcome group to generate a policy for.
        outcome_weights: The relative weights of the outcomes (optional)

    Raises:
        ValueError: If dp_group or outcomes are None.
    """
    if dp_group is None:
        raise ValueError("dp_group is required")
    else:
        self.dpg: SsvcDecisionPointGroup = dp_group

    if outcomes is None:
        raise ValueError("outcomes is required")
    else:
        self.outcomes: OutcomeGroup = outcomes

    if outcome_weights is None:
        weight = 1.0 / len(list(self.outcomes))
        self.outcome_weights = [weight for _ in self.outcomes]
    else:
        # validate the number of outcome weights
        if len(outcome_weights) != len(list(self.outcomes)):
            raise ValueError(
                f"Outcome weights must have {len(list(self.outcomes))} elements, but has {len(outcome_weights)}"
            )

        # validate that the outcome weights sum to 1.0
        total = sum(outcome_weights)
        if not math.isclose(total, 1.0):
            raise ValueError(f"Outcome weights must sum to 1.0, but sum to {total}")

        self.outcome_weights = outcome_weights

    logger.debug(f"Outcome weights: {self.outcome_weights}")

    self.policy: pd.DataFrame = None
    self.G: nx.DiGraph = nx.DiGraph()
    self.top: Tuple[int] = None
    self.bottom: Tuple[int] = None

    self._enumerated_vec = None
    self._check_valid_paths = validate

emit_policy()

Prints the policy to stdout in CSV format.

Source code in src/ssvc/policy_generator.py
190
191
192
193
194
195
196
def emit_policy(self) -> None:
    """
    Prints the policy to stdout in CSV format.
    """
    df = self.clean_policy()

    print(df.to_csv(index=False))